Acta Cryst. (1998). C54, 1187-1189

1-Phenethylguanidinium Chloride

Michelle Ann Soriano-Lesh, ${ }^{a}$ Elizabeth M. Holt, ${ }^{b}$ Fermin Agurre García ${ }^{c}$ and Manuel Soriano-García ${ }^{a}$
"Departamento de Bioestructura, Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, México DF 04510, México, ${ }^{h}$ Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA, and 'Area de Productos Naturales, Departamento de Biotecnología, UAM-Iztapalapa, México DF 09340, México. E-mail: soriano@servidor.unam.mx

(Received 11 November 1997; accepted 24 February 1998)

Abstract

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{5}^{+}$.-$\mathrm{Cl}^{-}$, contains two molecules with quite different conformations of the biguanide moiety. The crystal structure determined by Herrnstadt et al. [J. Chem. Soc. Perkin Trans. 2 (1979), pp. 735-740] is properly refined, the H -atom positions on the biguanide moiety are evident and the hydrogen-bonding scheme is clarified. Protonation of the biguanide moiety produces a rearrangement of protons in this part of the molecule. The two independent protonated molecules in the crystal form a hydrogen-bonded dimer through two intermolecular N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In addition, the molecules are held together by van der Waals forces and several N$\mathrm{H} \cdots \mathrm{Cl}$ intermolecular interactions.

Comment

The title compound, (I), was investigated as part of structural studies on hypoglycemic agents (Shapiro et al., 1959). There are two independent molecules in the asymmetric unit, denoted by primed and unprimed atom labels. Both molecules are closely similar in terms of bond lengths and angles, but quite different in terms of torsion angles. The main torsion-angle differences occur in the side chains at the Cl and $\mathrm{C1}^{\prime}$ atoms, giving rise to these two different structures.

Protonation of the biguanide moiety at N11 or N14 yielded the locations of two H atoms on both N11 and N14. These positions were not clear in the previous
determination (Herrnstadt et al., 1979). This could be interpreted in terms of a new preferred tautomeric form of the biguanide moiety found in the solid state, (II). The biguanide fragment is not altogether planar [maximum deviations from the plane are 0.592 (3), 0.539 (3) and -0.500 (3) A for atoms N11, N15 and N9, respectively, and $-0.599(3), 0.542$ (3) and 0.408 (2) \AA for atoms $\mathrm{N} 11^{\prime}, \mathrm{N} 14^{\prime}$ and $\mathrm{N} 9^{\prime}$, respectively] and forms a dihedral angle of $54.8(1)^{\circ}\left[72.5(1)^{\circ}\right.$ for the primed molecule] with the phenyl group.

There are two short intramolecular $\mathrm{N}-\mathrm{H} \cdot \mathrm{N}$ contacts [N15 \cdots N9 3.012(4), H15B \cdots N9 2.62 (3) \AA and N15-H15B \cdots N9 $112(3)^{\circ} ; \mathrm{N}^{\prime} 4^{\prime} \cdots \mathrm{N} 11^{\prime} 2.947$ (4), $\mathrm{H} 14 \mathrm{D} \cdots \mathrm{N} 11^{\prime} \quad 2.53(3) \AA$ and $\mathrm{N} 14^{\prime}-\mathrm{H} 14 \mathrm{D} \cdots \mathrm{N} 11^{\prime}$ $\left.115(3)^{\circ}\right]$. The molecular packing is shown in Fig. 2. There are two intermolecular $\mathrm{N}-\mathrm{H} \cdot \mathrm{N}$ contacts forming a dimer $\left[\mathrm{N} 14 \cdots \mathrm{~N} 12^{\prime \mathrm{i}} 2.991(3), \mathrm{H} 14 B \cdots \mathrm{~N} 12^{\prime \mathrm{j}}\right.$ 2.08 (3) \AA and $\mathrm{N} 14-\mathrm{H} 14 B \cdots \mathrm{~N} 12^{\prime \mathrm{i}}$ 175(2) ${ }^{\circ}$; $\mathrm{N} 15^{\prime} \cdots$ $\mathrm{N} 12^{\mathrm{ii}} 3.002$ (3), H15C $\cdots \mathrm{N} 12^{2 i} 2.15$ (2) \AA and $\mathrm{N} 15^{\prime}-$ $\mathrm{H} 15 \mathrm{C} \cdots \mathrm{N} 12^{\mathrm{ii}} 171(3)^{\circ}$; symmetry codes: (i) $-x+\frac{3}{2}$, $y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $\left.-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}\right]$. The previous interactions suggest two weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds may be present. It should be mentioned that the hydrogen-bonded dimer through two $\mathrm{N}-\mathrm{H} \cdot \mathrm{N}$ hydrogen bonds was described in the previous determination (Herrnstadt et al., 1979), but the positions of the H atoms involved in this hydrogen-bond pattern did not show up in the difference electron-density map. Consequently, a different tautomeric form of the biguanide moiety was proposed. In addition, the molecules in the crystal are held together by van der Waals forces and six intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Desiraju, 1991) $\left[\mathrm{N} 11 \cdots \mathrm{Cl} 11^{\text {iii }}, \mathrm{N} 14 \cdots \mathrm{Cl}{ }^{1 i}, \mathrm{~N} 15 \cdots \mathrm{Cl} 2^{\text {iv }}, \mathrm{N} 11^{\prime} \cdots \mathrm{Cl} 2^{v}\right.$, $\mathrm{N} 14^{\prime} \cdots \mathrm{Cl} 2^{v i}$ and $\mathrm{N} 15^{\prime} \cdots \mathrm{Cl}^{\text {vi }}$ of 3.286 (3), $3.272(3)$, 3.280 (2), 3.284 (3), 3.386 (3) and 3.263 (2) \AA, respectively; symmetry codes: (iii) $-x+1,-y+2,-z$; (iv) $-x+1,-y+1,-z ;$ (v) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$ (vi) x, $y+1, z]$.

Fig. 1. The molecular structure of the title compound with the atom labelling and 50% probability displacement ellipsoids.

Fig. 2. A perspective drawing of the packing arrangement along the c axis. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ interactions. Only the H atoms that participate in the interactions are shown.

Experimental

The title compound was purchased from the Sigma Chemical Company and recrystallized from 2-propanol at room temperature.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{5}^{+} . \mathrm{Cl}^{-}$
$M_{r}=241.73$
Monoclinic
$P 2_{1} / n$
$a=14.916$ (3) \AA
$b=9.372(2) \AA$
$c=19.076(4) \AA$
$\beta=107.64(1)^{\circ}$
$V=2541.3(9) \AA^{3}$
$Z=8$
$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in bromoform/benzene

Data collection

Siemens $R 3 m / V$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
7413 measured reflections
7399 independent reflections 3267 reflections with
$I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.053 \\
& \theta_{\max }=31.16^{\circ} \\
& h=-20 \rightarrow 20 \\
& k=0 \rightarrow 13 \\
& l=0 \rightarrow 26 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 2.0 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.051$
$S=1.053$
7399 reflections
385 parameters
H atoms: see below
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=0.252 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.253 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0001 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

CI-C6	1.382 (4)	$\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}$	1.370 (4)
$\mathrm{Cl}-\mathrm{C} 2$	1.387 (4)	$\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	1.382 (4)
$\mathrm{Cl}-\mathrm{C} 7$	1.493 (4)	$\mathrm{Cl}{ }^{\prime}-\mathrm{Cl}^{\prime}$	1.512 (4)
C2-C3	1.373 (4)	C2'-C3'	1.375 (5)
C3-C4	1.362 (5)	$\mathrm{C} 3^{\prime}-\mathrm{C}^{\prime}$	1.362 (5)
C4-C5	1.353 (5)	$\mathrm{C4}{ }^{\prime}-\mathrm{Cs}^{\prime}$	1.363 (5)
C5-C6	1.376 (5)	C5 ${ }^{\prime}$ - 6 $^{\prime}$	1.380 (4)
C7-C8	1.498 (4)	$\mathrm{C7} 7^{\prime}-\mathrm{C} 8^{\prime}$	1.499 (4)
C8-N9	1.467 (4)	$\mathrm{C} 8^{\prime}-\mathrm{Na}^{\prime}$	1.462 (3)
N9-C10	1.334 (3)	$\mathrm{N} 9^{\prime}-\mathrm{Cl} 0^{\prime}$	1.327 (3)
C10-N11	1.322 (3)	C10'-N11'	1.330 (3)
$\mathrm{Cl} 10-\mathrm{N} 12$	1.341 (3)	$\mathrm{C} 10^{\prime}-\mathrm{N} 12^{\prime}$	1.336 (3)
N12-C13	1.330 (3)	$\mathrm{N} 12^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	1.326 (3)
$\mathrm{C} 13-\mathrm{N} 15$	1.326 (3)	$\mathrm{Cl} 3^{\prime}-\mathrm{N} 15^{\prime}$	1.329 (3)
$\mathrm{Cl} 3-\mathrm{N} 14$	1.328 (3)	C13' ${ }^{\prime} 14^{\prime}$	1.332 (3)
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 2$	116.4 (3)	$\mathrm{C6}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	118.5 (3)
C6-Cl-C7	119.8 (3)	$\mathrm{Cb}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C7}^{\prime}$	120.0 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	123.9 (3)	$\mathrm{C2}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	121.5 (3)
C3-C2-Cl	121.6 (3)	$\mathrm{C3}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}$	119.4 (3)
C4-C3-C2	120.4 (3)	$\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	121.4 (4)
C5-C4-C3	119.4 (3)	$\mathrm{C5}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	120.0 (3)
C4-C5-C6	120.6 (3)	$\mathrm{C4}^{\prime}-\mathrm{C5}^{\prime}-\mathrm{C} 6^{\prime}$	118.9 (4)
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl}$	121.6 (3)	$\mathrm{Cl}^{\prime}-\mathrm{Cb}^{\prime}-\mathrm{C}^{\prime}$	121.9 (3)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	113.3 (2)	$\mathrm{C} 8{ }^{\prime}-\mathrm{C7}^{\prime}-\mathrm{Cl}^{\prime}$	110.9 (3)
N9-C8-C7	112.3 (3)	$\mathrm{N} 9^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 7^{\prime}$	112.8 (2)
$\mathrm{C} 10-\mathrm{N} 9-\mathrm{C} 8$	125.1 (2)	$\mathrm{C} 10^{\prime}-\mathrm{N} 9^{\prime}-\mathrm{C} 8^{\prime}$	123.4 (2)
$\mathrm{N} 11-\mathrm{Cl0}-\mathrm{N} 9$	116.4 (3)	$\mathrm{N} 9^{\prime}{ }^{-100} 0^{\prime}-\mathrm{N} 11^{\prime}$	117.5 (2)
$\mathrm{N} 11-\mathrm{C} 10-\mathrm{N} 12$	117.4 (2)	$\mathrm{N} 9^{\prime}-\mathrm{Cl0} 0^{\prime}-\mathrm{N} 12^{\prime}$	118.6 (2)
N9-C10-N12	126.1 (2)	$\mathrm{N} 11^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{N} 12^{\prime}$	123.8 (2)
$\mathrm{Cl3-N12-C10}$	123.1 (2)	$\mathrm{C} 13^{\prime}-\mathrm{N} 12^{\prime}-\mathrm{ClO}^{\prime}$	123.8 (2)
N15-C13-N12	125.8 (2)	N12'--C13'-N15 ${ }^{\prime}$	117.2 (2)
N15-C13-N14	117.4 (3)	N12'-C13'-N14'	125.6 (2)
$\mathrm{N} 12-\mathrm{Cl} 3-\mathrm{N} 14$	116.7(2)	$\mathrm{N} 15^{\prime}-\mathrm{Cl} 3^{\prime}-\mathrm{N} 14^{\prime}$	117.1 (2)
		168.0 (3)	
$\stackrel{\mathrm{Cl}}{\mathrm{C}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9-\mathrm{N} 9}$		81.0 (4)	
$\mathrm{C8}-\mathrm{N} 9-\mathrm{Cl0}-\mathrm{Nl1}$		-147.9 (3)	
$\mathrm{C} 8-\mathrm{N} 9-\mathrm{ClO}-\mathrm{N} 12$		28.7 (5)	
$\mathrm{N} 11-\mathrm{Cl0}-\mathrm{N12-Cl3}$		-140.8 (3)	
$\mathrm{N} 9-\mathrm{C} 10-\mathrm{N} 12-\mathrm{Cl} 3$		42.7 (4)	
$\mathrm{Cl0}-\mathrm{N} 12-\mathrm{Cl} 3-\mathrm{N} 15$		12.6 (4)	
$\mathrm{C10-N12-Cl3-N14}$		-171.3(3)	
$\mathrm{Cl}^{\prime}-\mathrm{C7}^{\prime}-\mathrm{C}^{\prime}-\mathrm{N}^{\prime}$		178.4 (3)	
$\mathrm{C7}^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{N}^{\prime}{ }^{\prime}-\mathrm{Cl} 0^{\prime}$		151.5 (3)	
$\mathrm{C} 8{ }^{\prime}-\mathrm{N} 9^{\prime}-\mathrm{ClO}^{\prime}-\mathrm{N} 11^{\prime}$		161.5 (3)	
$\mathrm{C} 8^{\prime}-\mathrm{Na}^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{N} 12^{\prime}{ }^{\prime}$		-21.3 (4)	
		147.1 (3)	
$\mathrm{N11}{ }^{\prime}-\mathrm{Cl}^{\prime} 0^{\prime}-\mathrm{Nl2}^{\prime}-\mathrm{Cl3}^{\prime}$		-36.0 (4)	
$\mathrm{C} 10^{\prime}-\mathrm{N} 12^{\prime}-\mathrm{Cl} 13^{\prime}-\mathrm{N} 15^{\prime}$$\mathrm{C} 10^{\prime}-\mathrm{N} 12^{\prime}-\mathrm{C} 13^{\prime}-\mathrm{N} 14^{\prime}$		165.3 (3)	
		-17.5 (4)	

All H atoms were located from a difference Fourier map and were refined with a constant isotropic displacement parameter U of $0.06 \AA^{2}$ and included in the structure-factor calculations.

Data collection: Siemens $R 3 \mathrm{~m} / \mathrm{V}$ diffractometer software. Cell refinement: XSCANS (Siemens, 1991). Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-

Plus (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

MS-G acknowledges financial support from DGAPA (Project No. IN201395). This is contribution No. 1654 of the Departamento de Bioestructura, Instituto de Química, UNAM, México.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1267). Services for accessing these data are described at the back of the journal.

References

Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Herrnstadt, C., Mootz, D., Wunderlich, H. \& Möhrle, H. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 735-740.
Shapiro, S. L., Parrino, V. A. \& Freedman, L. (1959). J. Am. Chem. Soc. 81, 2220-2223.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1189-1191

Cyclopropylcarboxamidinium Chloride

James Barker and Harold R. Powell ${ }^{b}$
${ }^{a}$ The Associated Octel Co. Ltd, PO Box 17, R\&D Laboratories, Oil Sites Road, Ellesmere Port, South Wirral L65 4HF, England, and ${ }^{b}$ Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England.
E-mail: hrp1000@cus.cam.ac.uk

(Received 8 September 1997; accepted 8 December 1997)

Abstract

Cyclopropylcarboxamidine hydrochloride, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} . \mathrm{Cl}^{-}$, the first structural example of an alicyclic central C -atom substituted amidine, contains almost equal $\mathrm{C}-\mathrm{N}$ bond lengths of 1.316 (4) and 1.304 (4) \AA, indicating that it is an amidinium salt.

Comment

The widespread interest in amidines as a result of their importance in the pharmaceutical, biological and coordination chemistry fields is reflected in the number
of structural papers which have appeared (Dehnicke, 1990; Edelmann, 1994; Barker \& Kilner, 1994; Alcock et al., 1994; Barker et al., 1997). The present study of cyclopropylcarboxamidine hydrochloride, (I), was carried out to furnish data with regard to the effect of an alicyclic group on the amidine fragment.

(I)

The $\mathrm{C}-\mathrm{N}$ bond lengths [1.316 (4) and 1.304 (4) \AA] are neither single nor double bond in character. They are similar to those found in the straight-chain isopropylamidine hydrochloride analogue, (II) [with mean bond lengths 1.317 (5) and 1.300 (6) \AA; Barker \& Powell, 1996], acetamidinium chloride, (III) [1.305 (2) and $1.310(3) \AA$; Cannon et al., 1976], and bis(acetamidinium) carbonate monohydrate, (IV) [1.308 (5) and 1.315 (5) \AA; Norrestam, 1984], but differ somewhat from those found for benzamidine hydrochloride monohydrate, (V) [1.293 (7) and 1.328 (7) Å; Thailambal et al., 1986]. These $\mathrm{C}-\mathrm{N}$ bond lengths are indicative of an amidinium salt configuration. Comparison of their $\mathrm{C}-\mathrm{N}$ bond lengths shows the aryl substituent to be more restrictive toward delocalization than the alicyclic group. The $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angle $\left[120.5(3)^{\circ}\right.$] is similar to that of compounds (II) [120.4(4) ${ }^{\circ}$] and (III) [120.5 (2) ${ }^{\circ}$], and there is a slight (but statistically insignificant) deviation from those found for (IV) $\left[121.6(3)^{\circ}\right]$ and (V) $\left[121.6(4)^{\circ}\right]$. This indicates that the amidinium-

Fig. 1. The molecular structure of cyclopropylamidinium chloride showing the hydrogen bonding of both counterions. The asymmetric unit is drawn with 50% probability displacement ellipsoids and symmetry-related atoms with spheres. The symmetry codes are: (i) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (ii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iv) $x+\frac{\frac{1}{2}^{2}}{2}, \frac{1^{2}}{2}-y, z+\frac{1}{2}$.

